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Boundary-layer separation at a free streamline. 
Part 3. Axisymmetric flow and the flow downstream 

of separation 

By R. C. ACKERBERG 
Polytechnic Institute of Brooklyn Graduate Center, Farmingdale, 

New York 11735 

(Received 29 January 1973) 

The results of Ackerberg (1970, 1971 a) ,  on the two-dimensional boundary-layer 
separation at a sharp trailing edge where a free streamline is attached, are 
extended to the axisymmetric case, with and without swirl. When the flow has 
swirl, the boundary-layer swirl velocity close to the wall may be opposite to that in 
the external flow; this may help explain the ‘bathtub vortex paradox’ observed 
by Sibulkin (1962). The solutions for the detached shear layers downstream of 
separation for two-dimensional and axisymmetric flows, with and without swirl, 
have been obtained. Some misprints in parts 1 and 2 are corrected in the appendix. 

1. Introduction 
Ackerberg (1970, 1971a), parts 1 and 2, considered the two-dimensional 

boundary-layer separation which occurs just upstream of a free streamline 
attached to the sharp trailing edge of a body. Unlike the usual separation prob- 
lem, in which a region of adverse pressure gradient is followed by a point of 
zero skin friction, these flows are characterized by an extremely favourable 
pressure gradient and a positive skin friction proportional to the inverse eighth 
power of the distance from the edge. This paper is concerned with extending the 
previous results to include axisymmetric flows, with and without swirl, and to 
determine the two-dimensional and axisymmetric motion in the detached shear 
layer downstream of the separation point. 
Our results indicate that the boundary-layer flow in the azimuthal plane, 

with or without swirl, is the same to the first few orders (save for the non- 
dimensionalization) as the two-dimensional flow discussed in parts 1 and 2. When 
swirl is present the boundary-layer swirl velocity can be represented by a sum 
of eigenfunctions and higher-order terms arising from the eigenfunctions. The 
multiplicative constants appearing in the eigenfunction expansion depend on 
the radial and swirl velocities upstream in the boundary layer, and the swirl 
velocity very near the wall may be opposite to that in the outer portion of the 
boundary layer and external flow. This phenomena of flow reversal has been 
observed by Sibulkin (1962) and Kelly, Martin & Taylor (1964) in connexion 
with the bathtub vortex draining through a sharp-edged orifice for unsteady 
flow, and by Neradka (1969) and Weske (1971) for steady flows. Sibulkin pro- 
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posed a physicalexplanation of the flow reversal in terms of an induced circulation 
opposite to that imposed by the external flow as a result of the turning of the 
boundary-layer vortex lines as they approach the drain. He apparently did not 
realize that there exists a pressure gradient singularity due to the sharp-edged 
orifice, which leads to a singular boundary-layer solution with large transverse 
velocities of O(R-*x-g) in an inner boundary layer and of O ( R - 4 x 4 )  in an outer 
boundary layer; here x is the distance from the edge and R is an appropriate 
Reynolds number. This serves to intensify the turning of the vortex lines and 
enhance the flow reversal; thus, the results presented here provide a quantitative 
basis for the physical argument put forth by Sibulkin. 

The other results in this paper deal with the flow downstream of separation, 
and once again the two-dimensional flow and the flow in the azimuthal plane, 
with or without swirl, are the same to the first several orders. Two solutions are 
possible for the first-order flow, one of which predicts backflow along the free 
streamline. The solution with backflow is rejected because the free streamline 
will turn into the fluid and this is unlikely for the abrupt separation considered 
here. 

Finally, we show that the velocity transverse to the wall and to the free stream- 
line is not continuous as the edge of the plate is approached from upstream and 
downstream, and a transition region is necessary to join these flows. The size of 
the region appears to be of O(R-8), centred about the edge, and in it a complicated 
viscous-pressure interaction takes place, whichwill be discussed in a subsequent 
paper. 

In  $ 2 the separation problem along the plate is formulated mathematically, 
and in $9 3 and 4 inner and outer solutions are obtained using matched asymptotic 
expansions. These results are discussed in connexion with the bathtub vortex 
in $5. Section 6 considers the flow downstream of the separation point in the 
detached shear layer. Some misprints in parts 1 and 2 are corrected in the 
appendix. 

2. Mathematical formulation 
A cylindrical co-ordinate system is chosen, with the origin located at the 

centre of the circular hole and with the axis of symmetry 2 directed into the 
fluid away from the free streamline (see figure 1).  The plate AX lies in the plane 
X = 0 with the separation point at 7 = a.t We denote dimensional variables by 
bars and introduce the non-dimensional variables 

r = FIa, z = ZRB/a, u+ = ElU,, v = VRg/U,, w = ZlW,, p = PlpU;. (2.1) 

Here (u, v, w) are the velocity components in the directions of (r, x ,  q5) increasing, 
U, is the speed (u2 + v2)B in the azimuthal plane and W, is the azimuthal velocity 
(the values at the edge of the boundary (or shear) layer for r -+ 1 ), p is the 
fluid density, and R = pU,a/p is the Reynolds number, p being the viscosity. 

t The analysis may be extended without difficulty to the more general case where the 
tangent to  the plate at the separation point intersects the ? axis at  a non-zero angle. 
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FIGURE 1. Flow geometry. 

We assume the motion is axisymmetric and steady, so that a/a$ = slat = 0. Por 
large values of R, the Prandtl boundary-layer equations may be used provided 
we delete a small neighbourhood of the edge where a complicated viscous- 
pressure interaction takes place; these equations are 

(ru*), + (rv), = 0, (2.2) 

u*u,* + VU,* - rr-1w2 = -p, + uZ, (2.3) 

u*w, + vw, + r-lu*w = w,,, (2.4) 

and Pa = O(l), (2.5) 

where subscripts denote partial differentiation and the parameter I' = (Wo/Uo)2. 
Our interest is in the local boundary-layer motion just upstream of the separa- 

tion point and it is convenient to introduce the new variables 

x = r - I, Y = z,  u(x, Y) = - u*(r, x ) ,  (2.6) 

and the stream function @(x, Y )  such that 

u = ( l + ~ ) - l @ ~  and w = ( I + X ) - ~ @ ~ .  

If (2.6) and (2.7) are substituted in (2.3) and (2.4), we obtain 

- @Yz@Y + $5 + @%@YY + Pw2 = px+ @YYY + O(47 (2.8) 

(2.9) and 

The boundary conditions at the wall and ak the edge of the boundary layer are 
satisfied to a good approximation if 

- @YW, + @xWY - W@Y = WY Y + 

$=@y=w=O for Y = O ,  x > O ,  (2.10) 

and @T --z Ue(x), w-+ W,(x) for Y --f co, x > 0,  (2.11) 
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where U,(x)  and W,(x) are the non-dimensional radial and azimuthal velocity 
components just outside the boundary layer, which are known from the potential- 
flow solution. 

The terminal conditions for x -+ 0 may be written as 

+-p+U, (Y)  and w-+W,(Y) for x + O + ,  Y > O ,  (2.12) 

where the terminal profiles U,( Y) and W,( Y) must be deduced in the course of 
this analysis. 

2.1. Potential $ow 

Whenthereisno swirl (w = 0)) it was shown by Armstrong (1953) and Aokerberg 
(1974) that the pressure gradient in the potential flow along the wall just up- 
stream of the separation point has the form 

px = kx-4+0(1) ( I c  > 0). (2.13) 

Moreover, Ackerberg (1974) found (2.13) to be valid not only with swirl (w + 0) 
but when there are body forces and a non-zero limit wall curvature for x -+ 0 + . 
This generalization of (2.13) to include body forces and curvature effects for 
two-dimensional flow has been rigorously established by Carter (1961)) and the 
two-dimensional results in parts 1 and 2 are valid in these more general situations. 
For the cases where k = 0 in (2.13)) the separation will be smooth, but here we 
are considering only the cases Ic > 0, i.e. abrupt separation. 

3. Similarity solution 
Since (2.8) exhibits the same singular forcing term (2.13) that arises in the 

two-dimensional case, it is expected that the velocity field in the azimuthal plane 
will be similar to the two-dimensional flow. This assumes, of course, that the 
azimuthal velocity term rw2 in (2 .8)  will not be as singular as ap/ax, a fact 
which is established a posteriori. Therefore, we assume that + and w in the inner 
boundary layer, where Y is small, are of the form 

The similarity variable v,r, which will be O( 1) in this region, is given by 

7 = (W Y/X*, (3.3) 

and a is a parameter to be determined. It should be noted when comparing (3.1) 
with similar expressions for 4 in parts 1 and 2 that we are now using x as 
independent variable rather than t = 1 - V , ( x )  cc ( -x)* ,  and the sense of x is 
reversed. Substituting (3.1) and (3.2) in (2.8) and (2.9), and retaining the largest 
terms for x -+ 0, we find 

qTT - %FFT,, + $F: + 1 - 2x(FZq7 - F7 FzT) + x ~ ~ + ~ G ~  + O(d) = 0, (3.4) 

and G,, -$FGq + 2aFTG + 2x(F,GX -FzG7) + 2 ~ 4 , G +  O ( X )  = 0.  (3.5) 
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The boundary conditions require 

and 
P(x, 0) = <(z, 0 )  = G(z, 0) = 0, 

F(z ,  7) and G(z, 7) must not contain any exponentially large terms for T,I -+ 00. 

(3.7) 

This last condition is necessary for P and G to be matched to the outer boundary- 
layer solutions, valid for Y = O ( l ) ,  which will be discussed later. 

If a: > - 4 and we let x + 0, (3.4) reduces to the equation for Fo(q) obtained in 
parts 1 and 2, and (3.5) yields a linear equation for G with a: appearing as an 
eigenvalue. McLeod (1972) has shown that a solution for Po exists, and is unique 
if it is required to satisfy the additional condition PA 2 0, which corresponds to 
no bI)rcMow, i.e. the radial velocity at  every point is directed toward the free 
streamline. 

In  the special case a: = - 4, (3.4) and (3.5) yield 

and 

(3.8) 

(3.9) 

subject to the boundary conditions (3.6) and (3.7). Here primes denote differentia- 
tion with respect to q. A solution of these equations is G = 0, P = Po(q). We now 
show this is the only acceptable solution. 

Assume a second solution (P, G) exists and introduce the integrating factor 

(3.10) 

so that (3.9) may be written in the form 

(46')' - BqP'G = 0. (3.11) 

We multiply (3.11) by G and integrate over the interval [0 ,  a), using integration 
by parts, to obtain 

(3.12) 

If we require P' 2 0, i.e. no backflow, then P 2 0 ,  and q(q) will be exponentially 
small for q -+ 00. Using the boundary conditions (3.6) and (3.7), it is clear that the 
boundary term in (3.12) vanishes and we are led to the contradiction 

For the cases a < - 2, (3.4) and (3.5) are of no value. 

3.1. The Jirst-order solutions for F and G 
Taking a > - 8, the fist-order solution of (3.4) is given by 

P(G 7) = &(T,I) + o(l) ,  (3.14) 

where F, is the function, arising from the two-dimensional flow, discussed in 
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parts 1 and 2 and by McLeod (1972). Thus, one of our principal conclusions is 
that the first-order flow in the azimuthal plane is the same as in the two- 
dimensional case, and this is independent of the swirl. The lowest-order equation 
for G will be G ~ - $ F o G ~ + 2 ~ F h G o  = 0, (3.15) 

subject to Go(’)) = 0, (3.16) 
and 

(3.17) 

Near 7 = 0, two complementary solutions of (3.15) may be found which start 
with multiples of 1 and 7, while for ?;r .+ co there are two (usually different) 
complementary solutions whose asymptotic expansions start with multiples of 

Y1(7) @) ( 3 . 1 8 ~ )  

G,(q) must not contain any exponentially large terms for 7 --f 00. 

and (3. 18 b) 

From part 1, Fo N A!$ (A! > 0) and ~ ~ ( 7 )  will be exponentially large for 7 -+ 00; 

thus to satisfy (3.17)) the value of a must be chosen to eliminate any multiple of 
~ ~ ( 7 ) .  Following the steps that led to (3.12) and (3.13), it is easy to show that 

a = yorn z(7) [ G ; ( 7 ) W 7 / j m  z(7) F a ? )  [lGo(7)l2dY 2 0, (3.19) 

where q(7) is defined in (3.10). Thus, all the eigenvalues are positive. The first 
three have been found numerically and are 

a0 = 0.3316% ..., a, = 1.3052 ..., = 2.2831 ... , (3.20) 

0 

3.2. Asymptotic expansions for  F and G 

We first note from (3.4) and (3.20) that G will not influence F until terms of O(x)  
are taken into account. Thus, the first four terms in the expansion for F are 
similar to those in the two-dimensional theory and we may write 

P(x, 7) = Po(?) + CxiYPl(r) + C2xrF,(7) +C3&’F3(?;r) + O(xB), (3.21) 

where y = 0.3157.. . and the functions F,(y) (n  = 1,2 ,3)  are the same functions 
of 7, PnY(7) (n = 1, 2,3) ,  respectively, which have been obtained in part 2. For 
each value of a, there will be an expansion of the form 

N,(x, 7;  a,) = Go(7) + QxJYG,(y) + C2xYG,(7) + C3&7 G3(7) +o(xgy) 
(m = 0,1 ,2 ,  ...), (3.22) 

where the G, (n = 1 ,2 ,3 )  are solutions of the ordinary differential equations 

G; -3Fo G; + ( 2 ~  + 7) FhG1 = (7 + Q) FIG; -2aF; Go, (3.23) 

Ui -iPoGb + ( 2 ~  + 27) PkG, 

= (27 + $) F,G; - 2aP; Go + ( y  + p) FIG: - (7 + 2a) FiG1, 
G: - 2PoGi + (2a -t 37) Ph (7, = (37 + 5)  F3G; + (27 + 2) P.Gi + (7 + p) FIGL 

- 2aF; Go - (7 + 2a) F ;  GI - (27 + 2a) Pi G,, 

(3.24) 

(3.25) 

.and each G, (n = 1,2,3)  is subject to the boundary conditions (3.16) and (3.17). 
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FIGURE 2. Go(7),  GI(?), G,(v) and GJv) against 7 for a = ao. 

a, = 0.33168 ... a1 = 1.3052 ... 
G80) 1~00000 1~00000 
GI(O) 0.12948 0.20795 

G30)  0.5693 x lo-* 0.7224 x 10-2 
G ( 0 )  -0.2116 x 10-1 - 0.2682 x 10-1 

TABLE 1 

Numerical solutions for G,(q) (n = 0, 1 ,2 ,3)  were obtained for a, and a1 and 
are displayed in figures 2 and 3. The unrounded values Gh(0) (n = 1,2 ,3)  are 
given in table 1; here we have used the normalization GA(0) = 1. The numerical 
method for finding the eigenvalues consisted of solving the differential equations 
for G,,(y; a) and the variation V(y; a)  = aG,/aa simultaneously. To suppress the 
exponentially large term (3 .18b) ,  we integrated backwards from q = 14 to q =  0, 
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-0.5 

a = g1 
FIGURE 3. G,(v), Gl(v), G,(v) and GJq) against 7 for a = al. 

and used Newton’s method and a Taylor series in a to correct the current value 
of a = a, so that Go(O; a,) = 0, i.e. 

Here s denotes the iterate, and a, the initial guess. The results converged rapidly 
and after the third iteration 

The computation of the functions Gn(y) (n = 1,2,3) was made by a method 
similar to that described in Ackerberg (1971 b).  

ES+l = a,-G0(0;as)/~(0;a,) .  

~c%s+l-a,\ < 10-10. 

3.3. Asymptotic expansions of Fm(y) and Gn(r)  for y + 00 

I n  parts 1 and 2 it was found that, for y --f co, 

(3.26) 
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where A: = 1.950718 ..., ,403 = - 1.577568 ..., A! = A! = A! = 0, A: = 9(5AZ)-l, 
and I?,(q) N qt(4n~+5)(Ag + o(1)) +B,Ph(q) (n = 1,2,3),  (3.27) 

where A t ,  B, are constants. Using these results in (3.15), (3.23)-(3.25), it is not 
difficult to show that, for 7 + 00, 

G0(q;a )  N 2 Dgq-@, (3.28) 
m 

k=O 
where 

Dg(ao) = 1-197 ..., D!(a,) = -0.900 ..., Dl = Dg = Do 5 - - 0,  

D: = (8A;/5Ag) aD8, D: = (72a/25Ag2) Dg, e ta ,  

G1(q; a )  N q@a+~) Dgq-Bk +q#@a-3) C, giq- tk ,  (3.29) 

and C,(q ; a) N Dtq4(2a+ny) + smaller terms (n = 2,3).  (3.30) 

The values of @(a) were obtained numerically. 

m m 

k=O k=O 

3.4. Complete inner aolution and skin friction 
The complete inner solution for w(x,q)  will be a sum extending over all the 
eigenvalues, i.e. 

wi(x, 7) = C, PmxamHm(x, 7; am), (3.31) 

where each term Hm is a sum of the form (3.22) and the Pm are arbitrary con- 
stants which depend on the motion in the boundary layer upstream. The value 
of C in (3.22) is the same for all am, and is determined from the solution (3.21). 

The radial and azimuthal components of skin friction TL, T$, respectively, 
are given by 

m 

m=O 

aU k t  7L = z/,_. = 2 (z> x - Q p q O )  +Csm'l(O)+C2xrI?;(O) 

+ C3x*rPi(0) + O(z*)], (3.32) 

where the values Fi(0)  (n = 0, 1 ,2 ,3 )  are given in part 2 and 

If Po + 0, the two largest terms in (3.33) are 
7f = (;'2-0.04332 ... + cf'x0*11453 ... + I . .  , 

(3.33) 

(3.34) 
where cf and C" are constants; thus, the azimuthal skin friction is weakly singular 
to first order. 

4. Principal asymptotic expansion valid for Y = O(1) 
The similarity solution of 0 3 is valid only for small Y ,  and thus the boundary 

condition (2.11) has been neglected. We assume Che outer solutions, va.lid for 
Y = 0(1), are of the form (see part 1) 

yo = y o ( Y ) + ~ % y l (  Y)+xhy2( Y)+xB+hry,(y)+~B+rY.'~(Y)+O(x~), (4.1) 
and 

wo = ~ ( Y ) + ~ ~ ~ ( Y ) + x ~ ~ ( Y ) + x ~ ~ Y ~ ( Y )  +&+rW,(Y)+O(xP). (4.2) 
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Once Yo and W, are known, the terminal profiles (2.12) will be given by 

Us( Y) = Y;( Y )  and W,( Y )  = W,( Y). (4.3) 

Here primes denote differentiation with respect to Y .  The terms in (4.1) and 
(4.2) of O[x#+ky, xt++y] are required to  match with terms arising from the multiples 
of 3; in (3.27) and the terms of the second sum in (3.29). 

If (4.1) and (4.2) are substituted in (2.8) and (2.9), we obtain a set of ordinary 
differential equations (in the usual way), which may be integrated to give 

and 

where h, are constants of integration, and the constant k appears in (2.13). 
For Y --f co, the conditions (2.11) and (2.13) require 

Y$ -+ 1 -2kxt+O(x) for Y 3 co, (4.10) 

and Wo-+ 1+O(x) for Y -+ 00, (4.11) 

where the order of the remainder in (4.11) is known from Ackerberg (1974). If 

Y;( Y), W,( Y )  --f 1 + exponentially small terms for Y -+ 00, (4.12) 
then 

Y ~ + O , Y ~ - + - 2 k , Y ~ - + O  ( n = 3 , 4 ) a n d  W,+O(n= 1,2,3,4) 

therefore the outer boundary condition (2.11) will bc, satisfied. 

for Y-tco; 

4.1. The matching requirement and the terminal velocity projiles 

The matching of the inner and outer solutions will determine the form of the 
terminal velocity profiles (4.3). This requires 

lim p ( x ,  q), wi(x, q) = limYO(x, Y), Wo(x, Y ) .  
?i+m Y-0 

(4.13) 

The limit on the left is one in which Y is non-zero, fixed but very small, with 
x -+ 0. The asymptotic results of $3.3 are used to  evaluate the left-hand side, 
which is then expressed in terms of 2, Y ;  the result should agree, term-by-term, 
with the right-hand side of (4.13). The elimination of exponentially large terms 
in the inner solutions via (3.7) is now seen to  be necessary because the terminal 
profiles Y;, W, are expected to behave like powers of Y (and possibly In Y )  for 
Y-tO. 
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The terminal profiles are determined from the largest terms in the asymptotic 
expansions of each F, and G, for 7 + 00. Therefore, using (3.26)-(3.30), we find 

and 

(4.14) 

(4.15) 

If Po =k 0, the first four terms in the terminal velocity profiles are given by 

u,( Y )  = wo Y+ + w1 Y%(1+2Y) + w2 Y+(1+47) + w3 Yiw+W + . . . , (4.16) 

w,( Y )  = po Y9ao + p1 Y%%+Y) + p2 Y4(2%+2Y) + p3 ym,+374 + . . . , (4.17) 

where wi and pi (i = 0 , 1 , 2 , 3 )  are constants. Some integral powers of Y may 
appear in the inner sum of (4.15) owing to integral powers in (4.14) which 
arise from the forcing terms p z  in (2.8). 

5. Discussion of results 
Our results indicate that the axisymmetric flow in the azimuthal plane, with 

or without swirl, has the same analytical character as the two-dimensional flow, 
a t  least up to terms including the fourth order. In  a flow with swirl, it is likely 
that the first few eigenfunctions Go(7; am) will predominate. Some interesting 
situations might arise if the second eigenfunction were the most important one. 
From figure 3, we see that an azimuthal flow reversal is likely in the inner boundary 
layer depending, of course, on the constant C appearing in (3.21) and (3.22). 
Ws note that a flow reversal has been observed by Sibulkin (1962) for unsteady 
swirling flow draining through a sharp-edged orifice when the liquid surface 
approaches the bottom of the vessel. Sibulkin suggested a physical explanation 
based on the turning of the boundary-layer vortex lines as they approach the 
drain. We not only agree with this explanation, but believe that separation at 
a sharp edge would serve to intensify the flow reversal due to the highly negative 
axial velocity component near the edge. It should be noticed that even with 
a multiple of the first eigenfunction present, the function G3(7; ao) changes sign 
(see figure 2) and might conceivably help in reversing the azimuthal flow direc- 
tion in the inner boundary layer. 

Attempts were made to duplicate Sibulkin’s results by Kelly et al. (1964), 
but they encountered difficulties in reproducing the flow reversals and noted 
that when the experimental apparatus was shocked, by a sudden blow, pro- 
nounced flow reversals could be induced. We do not find these results surprising 
or a t  variance with Sibulkin’s explanation for the following reason. The azimuthal 
velocity w depends on two countable sets of oonstants which arise from the 
eigenfunctions associated with the radial and azimuthal velocity components 
(only a single constant C has been displayed in (3.2 I), but an infinite number would 
appear if the series were continued). Therefore, depending on the details of the 
radial and azimuthal velocity profiles upstream, an extremely wide variety of 
swirl velocities are possible in the inner boundary layer near the separation point, 
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and these might be observed when the liquid surface approaches the bottom of 
the vessel. The effect of a sudden blow will be to produce a vortex sheet a t  the 
wall which corresponds essentially to changing the initial conditions in the inner 
boundary layer; this might well induce flow reversal. 

It should be emphasized that our results apply to  steady flows, while Sibulkin’s 
experiments were with unsteady flows. Weske (1971) and Neradka (1969) re- 
peated Sibulkin’s experiments using a steady flow produced by maintaining 
a constant head of fluid in the draining vessel. They observed flow reversal on 
the free surface when the liquid height was less than 8 mm, but did not discuss 
the possibility of a flow reversal below the free surface for liquid heights above 
8 mm. This is likely to be the case, since Neradka noted that the reversal of the 
swirl velocity near the bottom of the vessel started at  larger radial distances from 
the orifice than when it first appeared on the free surface. Weske introduced a 
drop of detergent on the free surface when flow reversal had occurred there 
and observed that the reversal disappeared immediately. It is not clear, however, 
that any reversal below the free surface was eliminated by this procedure, and 
in our opinion it was not. Weske suggests that surface shear stresses play a role 
in producing the flow reversal and we agree with this; however, we believe the 
proper interpretation of the surface shear condition is that it corresponds to 
changing the initial conditions for part of the boundary layer as explained above. 
It appears that further experiments, in which the upstream flow conditions in the 
boundary layer can be carefully controlled, are needed. 

6. The flow downstream of separation 
To study the motion of the detached shear layer downstream of S (see figure l),  

we define a co-ordinate system with r: measuring arc length along the free 
streamline SB, and 3 perpendicular to it and directed positively into the fluid. 
We introduce the non-dimensional variables 

where (u, v, w )  are the velocity components in the directions (x, y, $) increasing, 
and F,(x) is the distance from the axis of symmetry to a point on the free stream- 
line. If we take ro E 1, the results obtained in this section for the motion in the 
azimuthal plane, with zero swirl velocity, apply to the two-dimensional motion 
downstream of separation which arises from the flows considered in parts 1 and 2. 

The appropriate boundary-layer equations are given in Rosenhead (1963, 
p. 418), and may be written as 

(rou)z + (r0v)y = 0, (6.2) 

u z c , + ~ u ~ - ~ r , - ~ ( d r , / d x ) w ~  = uyy, (6.3) 

uw,+vwy +r;l(dr,/dx)uw = w y y .  (6.4) 

Here dr,/dx is minus the cosine of the angle between the free streamline and the 
r axis, and for 2 -+ 0 + , dr,/dx = - 1 + O(x) .  The equation of the free streamline, 
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for x = 0(1), is given by potential theory and (6.2)-(6.4) are valid provided ~6 
and (&/aX) a2 are small compared with unity (see Goldstein 1938, p. 128). Here K 

is the curvature of the free streamline in the azimuthal plane, which is O(a-lx-h) 
for x -+ 0 + , and 6, the boundary-layer thickness, is of O(aR-4); thus curvature 
effects are unimportant if X aR-3. We note later that the boundary-layer 
approximation fails in the larger region 5 = O ( a R d )  owing to a complicated 
viscous-pressure interaction and the curvature terms are unimportant here in 
the region x: = O( 1). 

Our interest now is in the local behaviour just downstream of the separation 
point, i.e. x -+ 0 + . To satisfy (6.2) we introduce the stream function +(x, Y )  

(6.5) 
such thab 

u = r;I$rF and v = - rgl+x. 

Noting r,,(x) = 1 -x+ O(x2)  from free-streamline theory, (6.3) and (6.4) may be 
written for x -f 0 + as 

~ Y 1 C r P X + + r 2 p - - $ X $ r . p P + ~ W 2  = +YPP+o(x), (6.6) 
and (6.7) 

Using the boundary-layer approximation, the zero shear condition along the 
free streamline requires 

+Y wx - +X% -w+-P = WPY + O(X)*  

$ = + P y = w p = O  for Y = O ,  x>O. (6.8) 

+-p-+l+O(x) and w+l+O(x) for Y-+oo.t (6.9) 

At the edge of the boundary layer, we must; satisfy 

Finally, the initial conditions require 

$F-+U,(Y) and w-+W,(Y) for x + O + ,  (6.10) 

where Us( Y )  and K( Y )  are given by (4.16) and (4.17). 

6.1. The inner solution 
The flow field will again be composed of an inner region where the similarity 
variable 7 = O(1) (in (3.3), x and Y are now to be interpreted by their new 
definitions) and an outer region where Y = O(1). We can write solutions in the 
form 

9 = 2(k/2)4x%x,7)7 (6.11) 

and wi = (k/r)txeg(x, 7). (6.12) 

To satisfy the initial conditions (6.10), CI: will have to assume the eigenvalues 
determined from the upstream solution. Substituting (6.11) and (6.12) in (6.6) 
and (6.7), we obtiain the equations 

f,,, + 2f,, - kf; + 2x(fzf,, -f,fx,) - xza+*gg2 + O(x)  = 0, (6.13) 
and g , , + ~ f g , - ~ ~ f , g - 2 ~ ( f , g , - f x g , ) + 2 x f q g + 0 ( x )  = 0. (6.14) 

t The error estimates in these expressions arise from the approximation r,(m) = 1 + O(z) 
(see (6.5)) and from the results U&) = 1 + O(m),  W&) = 1 + O(z), for m +- 0, obtained in 
Ackerberg (1974). In special cases, the neglected terms may be o(m). 

42 FLhf 59 



658 R. C. Aclcerberg 

We assume the expansion 

f(X9 7) = f o ( T )  + C x & w / )  + C2W2(?)  + C3X*Yf3(7) + . . . , (6.15) 

and for each value of a there will be an expansion of the form 

h,(x, 7; a,) = %(T) + cx*rY,(T) + C2xYg,(q) + C3x3rg3(g) + . .., (6.16) 

with W Z ( X ,  7) = x Pmxamhm(x, 7; am). (6.17) 

The constants P, are the same as those appearing in (3.31). Substituting (6.15) 

m 

m=O 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

The boundary condition (6.9) a t  the edge of the boundary layer will be satisfied 
by an outer expansion to be discussed later. 

The expansion (6.15) and the functionsf,(?) are applicable to the two-dimen- 
sional flow downstream of free streamline separation discussed in parts 1 and 2 
provided the azimuthal plane and E ,  3 (see figure 1) are interpreted in a two- 
dimensional sense. We should note that the homogeneous equation (6.20) with 
n = 0 has eigensolutions for a < 0 (cf. (3.15), (3.19)) (6.20)) such that go(?;a) 
is exponentially small for 7 --f a. These solutions are consistent with (6.9) and 
(6.10) but yield a singular azimuthal velocity on the bounding streamline 7 = 0 
for x + O + .  

6.2. The Jirst-order solutions 

The solution of (6.18) withfh(0) > 0, and (6.20)) with n = 0 and a = cc0, a, were 
obtained numerically and are displayed in figure 4. A second solution with 
&(O) < 0 has been found and is displayed in figure 5 with the corresponding 
solutions of (6.20) with n = 0 and a: = a,, al. The physical significance of the 
second solution is in doubt and will be discussed later. We note, however, that, 
whenfh(7) > 0, it may be shown that the solutions go(?; a,) remain of one sign, 
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contrary to the behaviour of Go(r]; a,) upstream. Thus, the possibility of a swirl 
flow reversal in the free shear layer cannot easily be discerned. The unrounded 
numerical values forfh(0) and go(O; a,) (m = 0,1) are 

fh(0) = 2.58491 ..., 
fh(0) = -0.44869..., 

go(O;cCo) = 0*91003 ..., 

g o ( O ; a o )  = -0*11307..., 

go(O;a , )  = -0-76173...; 

g0(0;a1) = 0.024203 ... . 
The numerical solutions for fo were obtained by choosing the particular values 

f ’ (0 )  = _+ 1. In both cases, it  was found numerically thatf0(q) N D*r]S for r] --f co 
where the constants D-+ > 0. By scaling the dependent and independent variables 
in (6.18), we find that the solutions satisfying (6.22) will have the initial values 

fh(0) = f (4P*)$, (6.24) 

where A! is defined by (3.26). The vaIues D, were obtained from the numerical 
integrations using the asymptotic expansion given in $6.3.  

The solutions for go were obtained by noting that near r] = 0 two comple- 
mentary solutions of (6.20) start with multiples of 1 and r ] ,  while for r] --f co, two 

42-2 
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FIGURE 5.fo(7),fi(7), go(7; a,,) and go(7;a1) against 7 forfi(0) = -0.44869... . 

(usually different) complementary solutions have asymptotic expansions starting 

To satisfy (6.23), we must choose values of a corresponding to the eigenvalues 
upstream, and the initial value, go(O, E ) ,  will fix the constant 08 in (6.23). It is 
not necessary to suppress an exponentially large term, as in (3.15), and the 
numerical integration was started at  7 = 0 and carried to 7 = 15. The multiple 
of rj~@ in the asymptotic expansion of go was determined from the numerical 
results using the asymptotic expansion in Q 6.3. 

6.3. Asymptotic expansions o f f ,  and g, for rj --f cc, 

The asymptotic expansion of fo for 7 --f co is 
m 

fo(7) - 7# c afl:7--fk, (6.27) 
k = O  

where 
= .A! = 1.950718 ..., u:+ = 0.960298 ..., @- = - 12.108150 ..., 

ao - - u2 0 = a$ = a! = a: = 0, a: = (~ ,0)~/5a! .  
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The values a!+ and a:- correspond to the cases f A(0) 0. Using these results in 
(6.20) with n = 0, we find 

(6.28) 

where 
d:(aO) = Di(a0) = 1.197 ..., d:(a,) = D:(cx~) = -0*9OO..., 

dp = d,O = dg = dg = d! = 0, dg = (8a:/5a:) ad:, dg = (2a!/5a$2 a(8a - 3) dj .  

The solutions of (6.19) and (6.20), in general, will have asymptotic expansions 
of the form 

fn(rl) - rl"4n7+5'(a;+0(l)) +LfA(r)  (n = 192,317 (6.29) 

and gn(q) N d$r@a+"7)+srnaller terms (n = I, 2,3). (6.30) 

The last term of (6.29) arises becausefh(7) is a complementary solution of (6.19). 
The values f k ( O ) ,  g,(O; a)  are chosen to satisfy (6.22) and (6.23), i.e. 

a: = A t  and d; = Dg. (6.31) 

6.4. Downstream principal asymptotic expansion valid for Y = O( 1) 

To satisfy the boundary conditions (6.9), it is necessary (as in $ 4) to find a solution 
valid for Y = O( 1). We assume solutions of the form 

$' = yo( Y) Y) + Y )  + ~ 3 + 4 7 $ ~ (  Y )  +X"+Y$~(  Y )  + O(X) ) ,  (6.32) 
and 

(6.33) 

where Yo and Wo are given by (4.14) and (4.15) and Y is to be interpreted by its 
new definition in $6.  From (4.3), (6.32) and (6.33), we note that (6.10) will be 
satisfied for x -+ O +  . If (6.32) and (6.33) are substituted in (6.6) and (6.7), we 
obtain a set of ordinary differential equations which can be integrated to yield 

$n(Y) = PnyA(Y)  (n = 1,2,3, 4), (6.34) 

and wn( Y )  = Pn WA( Y) (n = 1 7  2,3,4), (6.35) 

where thep, are constants of integration. Using the arguments in the discussion 
following (4.11), it is apparent that the outer boundary condition (6.9) will be 
fulfilled if Yo and Wo satisfy (4.12). 

w0 = h( Y )  +x*w,( Y) + x4w2( Y) + d+47w3( Y )  + x3+7w4( Y) + O ( X ~ ) ,  

6.5. The constants Al and p ,  
By carrying out the matching described in (4.13), values for the constants A, 
(see (4.4) and (4.7)) and pl may be found. Using the notation of (4.14), we find 

(6.36) 

The first-order Y velocity component in the region Y = O( 1) is given by 

V ( X ,  Y)(upstreo,m = @,x-QYA( Y ) ,  

V ( X ,  Y )  I downstream = - +P? ~-'yh( Y ) .  

(6.37) 

(6.38) and 
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From the numerical results, 

-&I; = &(ik)-&( 6.2070.. .). 

Therefore, as x --f 0 5 for Y = O(l), we find that v is not continuous in any case, 
and would change sign if the solution corresponding to f i ( 0 )  < 0 were chosen. 
We think it unlikely that the free streamline will turn toward the interior of the 
fluid when the separation is abrupt and reject the solution withfh(0) < 0. There 
is some experimental evidence indicating that for smooth separation ( k  = 0 in 
(2.13)) with a free streamline, backflow does occur in some cases and the solution 
with backflow rejected by Stewartson (1953, p. 568) may be physicaJly relevant. 
We also note that awlax for Y = O(1) is not continuous for x + 0 k . 

The discontinuity in TJ, exhibited by (6.37) and (6.38)) and in awlax will have 
to be smoothed out in a transition region near the trailing edge. The size of this 
region appears to be 11 -rl = O(B-%), and in it a complicated viscous-pressure 
interaction, similar to that studied by Stewartson (1969) and Messiter (1970), 
takes place. This will be discussed in a future paper. 
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Appendix. Corrections to parts 1 and 2 
In  part 1, the following equations should read 

(3.10) 

(4.8) 

(4.10) 

(4.22) 

(4.33) 

(4.34) 
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In  part 2, the following equations should read 

4 ( t ,  Y )  = (2+k)-1&&(r) + CtYF,(r) + C2t2rFZy(r) + C3t37F3,(r) + tP1(r) + o(t)] ,  

(3.1) 

+tp;(r) +o(t)l,  (3.9) 

u(t ,  Y ) /u ,  = ti( 1 - t)-1 [PA(?j) + C t W j ( y )  + C2t2W&(r) + C3t37F&,(r) 

TW = aU/a Yl y=o = 24kt-4[a0 + a,Ctr + a,,C2t2r + a3,C3t37’ + a,t + o(t)]. (3.10) 

In  the appendix to part 2 the following equation should read 

$, 7%4a+5), qr&a+14) exp {$Ao$}. (A 1) 
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